

II Semester M.Sc. Degree Examination, July 2017 (RNS – Repeaters) (2011-12 and Onwards) MATHEMATICS

Paper - M-204: Partial Differential Equations

Time: 3 Hours Max. Marks: 80

Instruction: Answer any five full questions.

- 1. a) Eliminate c from $x^2 + y^2 + (z c)^2 = c^2$ to form the partial differential equation.
 - b) Give an example for first order linear, semilinear, quasilinear and second order linear partial differential equations.

c) Solve
$$u(x + y)u_x + u(x - y)u_y = x^2 + y^2$$
 with $u = 0$ on $y = 2x$. (4+4+8)

- 2. a) Obtain solution of $(p^2 + q^2) x = pz$ containing the curve x = 0, $z^2 = 4y$.
 - b) Find the solution of i) $u_t + xu_x = -tu$, $u(x, 0) = \sin x$ and ii) $u_x u_y = u$ with $u(0, y) = y^2$ by using the method of characteristics. (6+10)
- 3. a) Classify the following equations as being hyperbolic or parabolic or elliptic

i)
$$(n-1)^2 \frac{\partial^2 z}{\partial x^2} - y^{2n} \frac{\partial^2 z}{\partial y^2} = ny^{2n-1} \frac{\partial z}{\partial y}$$
,

ii)
$$u_{xx} + 2u_{xy} + u_{yy} = 0$$
 and

iii)
$$u_{xx} + xu_{yy} = 0, x \neq 0.$$

- b) Reduce the equation $u_{xx} u_{yy} = 0$ to its canonical form. (9+7)
- 4. Explain Monge's method of solving F(x, y, z, p, q, r, s, t) = 0 and using the method obtain the solution of the equation $r + 4s + t + (rt s^2) = 2$.
- 5. a) Obtain D'Alemberts' wave solution of $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$; $-\infty < x$, $t < \infty$ subject to

$$\left. \begin{array}{l} u(x,0) = f(x) \\ \frac{\partial u}{\partial t}(x,0) = g(x), \end{array} \right\} - \infty < x < \infty.$$

b) Show that a variable separable solution of wave equation in spherical coordinates leads to a Legendre differential equation. (6+10)

PG - 621

- 6. a) State and prove Dirichlet problem in a circular region.
 - b) Obtain solution of Neumann problem in a Half-plane

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0; \ -\infty < x < \infty, \ 0 < y < \infty$$

subject to

$$\frac{\partial u}{\partial y}(x,0) = f(x)$$

$$\frac{\partial u}{\partial y} \to 0 \text{ as } y \to \infty$$
(10+6)

7. a) Solve by appropriate Fourier transform the IBVP

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}; \ 0 \le x \le \infty, \ t \ge 0$$

subject to
$$u(x, 0) = f(x) = \begin{cases} x; & 0 < x < 2 \\ 0; & \text{elsewhere} \end{cases}$$

$$u(0, t) = 0; t \ge 0$$

b) Solve by Fourier decomposition the following IBVP:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}; \ 0 \le x \le L, L \ge 0$$

subject to

$$u(x, 0) = f(x) = \begin{cases} \frac{x}{L}; & 0 \le x \le \frac{L}{2} \\ 1 - \frac{x}{L}; & \frac{L}{2} \le x \le L \end{cases}$$

$$\left\{ \begin{array}{l}
 u(0,t) = 0 \\
 u(L,t) = 0
 \end{array} \right\}; \ t \ge 0$$
(8+8)

- 8. a) Explain similarity transformation through an appropriate example.
 - b) Using Green's function solve $u_t u_{xx} = g(x) \delta(t)$; $-\infty < x < \infty$, t > 0 subject to $u(x, 0) = 0; -\infty < x < \infty$.
 - c) Write down a weak formulation of $u_{xx} + u_{yy} + u = 0$. (6+5+5)